If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3s2 + 7s + 3 = 0 Reorder the terms: 3 + 7s + 3s2 = 0 Solving 3 + 7s + 3s2 = 0 Solving for variable 's'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 1 + 2.333333333s + s2 = 0 Move the constant term to the right: Add '-1' to each side of the equation. 1 + 2.333333333s + -1 + s2 = 0 + -1 Reorder the terms: 1 + -1 + 2.333333333s + s2 = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 2.333333333s + s2 = 0 + -1 2.333333333s + s2 = 0 + -1 Combine like terms: 0 + -1 = -1 2.333333333s + s2 = -1 The s term is 2.333333333s. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333s + 1.361111112 + s2 = -1 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333s + s2 = -1 + 1.361111112 Combine like terms: -1 + 1.361111112 = 0.361111112 1.361111112 + 2.333333333s + s2 = 0.361111112 Factor a perfect square on the left side: (s + 1.166666667)(s + 1.166666667) = 0.361111112 Calculate the square root of the right side: 0.600925213 Break this problem into two subproblems by setting (s + 1.166666667) equal to 0.600925213 and -0.600925213.Subproblem 1
s + 1.166666667 = 0.600925213 Simplifying s + 1.166666667 = 0.600925213 Reorder the terms: 1.166666667 + s = 0.600925213 Solving 1.166666667 + s = 0.600925213 Solving for variable 's'. Move all terms containing s to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + s = 0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + s = 0.600925213 + -1.166666667 s = 0.600925213 + -1.166666667 Combine like terms: 0.600925213 + -1.166666667 = -0.565741454 s = -0.565741454 Simplifying s = -0.565741454Subproblem 2
s + 1.166666667 = -0.600925213 Simplifying s + 1.166666667 = -0.600925213 Reorder the terms: 1.166666667 + s = -0.600925213 Solving 1.166666667 + s = -0.600925213 Solving for variable 's'. Move all terms containing s to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + s = -0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + s = -0.600925213 + -1.166666667 s = -0.600925213 + -1.166666667 Combine like terms: -0.600925213 + -1.166666667 = -1.76759188 s = -1.76759188 Simplifying s = -1.76759188Solution
The solution to the problem is based on the solutions from the subproblems. s = {-0.565741454, -1.76759188}
| -28=-4y+11y | | 10x+40=7x-21 | | 15-3y=3y+12 | | (7x)=35 | | [5-15]= | | 2y+5y-8=13 | | (7x+1)=35 | | 72s^4-8s^2=0 | | -5k+13k=-32 | | 5b-7b=4 | | -3c+(-7)=17 | | 4=-20 | | 4=r-1 | | 3x-(-7)=25 | | 3b^2-10b=0 | | 3b+-(7)=17 | | 2m^2+10=10 | | 4+5*(x+2)=3-x | | 1=.08(Y^1) | | -2a-3=-15 | | -1/4(x-8)+1/2(x+2)=-3 | | -2u+8=4 | | -3x-2=84 | | 2a-5=-3 | | (5-7xy+8x^2-y^2)-(3y^2-7xy-6)= | | 3c-3=27 | | 14a=-1+13a | | 3a-(-4)=7 | | -2(x+1)-(8+7x)=-10x | | -2v+9=27 | | 2a-(-8)=18 | | -3c-9=-15 |